Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41
نویسندگان
چکیده
منابع مشابه
Growth mechanism of amorphous selenium nanoparticles synthesized by Shewanella sp. HN-41.
Shewanella sp. HN-41 was exploited for selenium nanoparticles synthesis from aqueous selenite compounds under anaerobic conditions. Various reaction conditions, including reaction time, initial biomass, and initial selenite concentration, were systematically investigated to determine their effects on particle size distribution and formation rate. The biomass concentration of Shewanella sp. HN-4...
متن کاملExpression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3.
Because arsenate [As(V)] reduction by bacteria can significantly enhance arsenic mobility in the environment, it is important to be able to predict when this activity will occur. Currently, two bacterial systems are known that specifically reduce As(V), namely, a respiratory system (encoded by the arr genes) and a detoxification system (encoded by the ars genes). Here we analyze the conditions ...
متن کاملStructure of biogenic uraninite produced by Shewanella oneidensis strain MR-1.
The stability of biogenic uraninite with respect to oxidation is seminal to the success of in situ bioreduction strategies for remediation of subsurface U(VI) contamination. The properties and hence stability of uraninite are dependent on its size, structure, and composition. In this study, the local-, intermediate-, and long-range molecular-scale structure of nanoscale uraninite produced by Sh...
متن کاملDraft Genome Sequence of Shewanella sp. Strain CP20
Shewanella sp. CP20 is a marine bacterium that survives ingestion by Tetrahymena pyriformis and is expelled from the protozoan within membrane-bound vacuoles, where the bacterial cells show long-term survival. Here, we report the draft genome sequence of Shewanella sp. CP20 and discuss the potential mechanisms facilitating intraprotozoan survival.
متن کاملsuppression of coke formation in thermal cracking by coke inhibitors
the main purpose of this research was to:1.develop a coking model for thermal cracking of naphtha.2.study coke inhibition methods using different coke inhibitors.developing a coking model in naphtha cracking reactors requires a suitable model of the thermal cracking reactor based on a reliable kinetic model.to obtain reliable results all these models shall be solved simultaneously.for this pu...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2007
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0707595104